Index

1 Main Frame ......................................... 6
   1.1 Motorplate 6
   1.2 Main Frame 7
   1.3 Bearing Case 8
2 Landing Gear ..................................... 9
3 Motor Installation ............................. 10
   3.1 Motor Adaptor Plate 10
   3.2 Motor Attachment 11
4 Main Gear .......................................... 12
   4.1 Hub 12
   4.2 Adjusting Gear Backlash 13
5 Tail Rotor............................................ 14
   5.1 Tail Rotor Shaft 14
   5.2 Vertical Fin 15
   5.3 Pitch Slider 16
   5.4 Tail Rotor Lever 17
   5.5 Tail Rotor Hub 18
   5.6 Final Assembly 19
6 Tail Boom ........................................... 20
   6.1 Tail Boom Assembly 20
   6.2 Tail Boom Holder 21
   6.3 Tail Drive Pulley 22
   6.4 Tail Control Rod 23
   6.5 Installation 24
   6.6 Horizontal Fin 25
   6.7 Tail Rotor Blades 25
7 Finished Main Frame & Tail Boom . 26
8 Preparation for Servo Installation . 27
   8.1 120° CCPM 27
   8.2 90° CCPM 27
   8.3 Servo Arms 28
   8.4 Servo Centering 28
   8.5 Linkage 29
9 Servo Installation .............................. 30
   9.1 Tail Rotor Servo 30
   9.2 Elevator Servo 31
   9.3 Elevator Linkage/Swashplate 32
   9.4 Canopy Fixing Bolts 32
   9.5 Aileron Servo left 33
9.6 Aileron Servo right 34
9.7 Aileron Linkage 35
10 Wash-Out Hub ..................................... 36
   10.1 Assembly 36
   10.2 Installation 37
11 Main Rotor Head ................................ 38
   11.1 Blade Grips 38
   11.2 Mixing Arms 38
   11.3 Yoke 39
   11.4 Seesaw 40
   11.5 Flybar Control Bridge 41
   11.6 Ball Bolts 41
   11.7 Flybar 42
   11.8 Flybar Paddles 42
   11.9 Final Assembly 43
   11.10 Rotor Head Linkage 44
12 Logo 10 assembled ............................ 46
13 RC Installation ................................ 47
   13.1 Receiver, Gyro, Speed Controller 47
   13.2 Battery 48
14 RC Programming .............................. 49
15 Canopy ............................................ 55
   15.1 Trimming and Taping 55
   15.2 Decals 56
16 Rotor Blades..................................... 57
17 Final Pre-Flight Check .................. 58
   17.1 Direction of Main and Tail Rotation 58
   17.2 Blade Tracking Adjustment 58
18 Control Movements ............................. 59
   18.1 Pitch/Throttle 59
   18.2 Rudder 59
   18.3 Elevator 60
   18.4 Aileron 60
19 Overview ........................................ 61
   19.1 Chassis 61
   19.2 Rotor Head 62
   19.3 Tail Boom/Tail Rotor 62
   19.4 Upgrades/Accessories 63

Manual LOGO 10  Page 2  ©Mikado Modellhubschrauber
OPERATING YOUR MODEL SAFELY

Operate the helicopter in spacious areas with no people nearby.

! Warning: Do NOT operate the helicopter in the following places and situations (or else you risk severe accidents):

- in places where children gather or people pass through
- in residential areas and parks
- indoors and in limited space
- in windy weather or when there is any rain, snow, fog or other precipitation

If you do not observe these instructions you may be held reliable for personal injury or property damage!

Always check the R/C system prior to operating your helicopter.
When the R/C system batteries get weaker, the operational range of the R/C system decreases. Note that you may lose control of your model when operating it under such conditions.

Keep in mind that other people around you might also be operating a R/C model.
Never use a frequency which someone else is using at the same time. Radio signals will be mixed and you will lose control of your model.

If the model shows irregular behavior, bring the model to a halt immediately. Turn off all power switches and disconnect the batteries. Investigate the reason and fix the problem. Do not operate the model again as long as the problem is not solved, as this may lead to further trouble and unforeseen accidents.

! Warning: In order to prevent accidents and personal injury, be sure to observe the following:

Before flying the helicopter, ensure that all screws are tightened. A single loose screw may cause a major accident.
Replace all broken or defective parts with new ones, as damaged parts lead to crashes.
Never approach a spinning rotor. Keep at least 10 meters/yards away from a spinning rotor blades.
Do not touch the motor immediately after use. It may be hot enough to cause burns.
Perform all necessary maintenance.

PRIOR TO ADJUSTING AND OPERATING YOUR MODEL, OBSERVE THE FOLLOWING

! Warning: Operate the helicopter only outdoors and out of people’s reach as the main rotor operates at high rpm!
! Warning: While adjusting, stand at least 10 meters/yards away from the helicopter!

Novice R/C helicopter pilots should always seek advice from experienced pilots to obtain hints with assembly and for pre-flight adjustments. Note that a badly assembled or insufficiently adjusted helicopter is a safety hazard!
In the beginning, novice R/C helicopter pilots should always be assisted by an experienced pilot and never fly alone!
Throttle channel should be in motor OFF position while powering up.
When switching the R/C system ON or OFF, always proceed in the following order:

When switching ON:
Position the throttle control stick (on transmitter) to a position where the LOGO 10 motor does not operate.
Turn on the transmitter.
Turn on the receiver.
Connect the motor battery.
Operate your model.

When switching OFF:
Turn off the motor (move throttle control to a position where motor does not operate).
Wait until the rotor head has stopped spinning.
Disconnect the motor battery.
Turn off receiver.
Turn off transmitter.
Tools for Assembly & R/C Equipment

Drill with 1.5mm bit (.059 in)

Rubber Hammer

Screwdrivers (plus and minus)

Scissors

Marker

Hex Wrenches 1.5/2.0/2.5/3.0 mm (.055/.079/.098/.118 in)

Threadlock

Ball link pliers

Alle shown products are examples. You may use different brands.

Motor + Speed Controller (check the Mikado webpages for recommended motors)

BEC, replaces receiver battery

Fast Charger (Schulze isl 6-330d or isl 6-636+)

Receiver (Graupner DS 19 or SMC 19 SPCM)

Gyro (Futaba GY240 or GY401)

Receiver Battery (Sanyo AR500)

Battery (Sanyo RC2400 or Sanyo 3000 NiMH)

4x Mini Servos (Graupner DS361 or Graupner C341)

Radio with Heli-Software

Threadlock

Scissors

Screwdrivers (plus and minus)

Rubber Hammer

Drill with 1.5mm bit (.059 in)
### Listing of Parts

#### Chassis, Bag 1

<table>
<thead>
<tr>
<th>Part</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1914</td>
<td>2</td>
<td>countersunk screw M4x10</td>
</tr>
<tr>
<td>1915</td>
<td>2</td>
<td>countersunk screw M3 x 8</td>
</tr>
<tr>
<td>1953</td>
<td>6</td>
<td>socket head cap screw M3 x 10</td>
</tr>
<tr>
<td>1961</td>
<td>1</td>
<td>cylinder screw M3x35</td>
</tr>
<tr>
<td>1964</td>
<td>2</td>
<td>socket head cap screw M3 x 12 flat head</td>
</tr>
<tr>
<td>2012</td>
<td>2</td>
<td>washer 3 x 7 x 0.5</td>
</tr>
<tr>
<td>2062</td>
<td>4</td>
<td>self-tapping screw 2.9 x 13</td>
</tr>
<tr>
<td>2064</td>
<td>2</td>
<td>self-tapping screw 2.9 x 16</td>
</tr>
<tr>
<td>2072</td>
<td>8</td>
<td>hex nut M3</td>
</tr>
<tr>
<td>2189</td>
<td>1</td>
<td>rod end 8 mm</td>
</tr>
<tr>
<td>2370</td>
<td>1</td>
<td>hex spacer, 38 mm</td>
</tr>
<tr>
<td>2370</td>
<td>2</td>
<td>hex spacer, 19 mm</td>
</tr>
<tr>
<td>2384</td>
<td>1</td>
<td>thread rod M3</td>
</tr>
<tr>
<td>2724</td>
<td>2</td>
<td>O-ring battery holders, 38x3,5 + 46x3,5</td>
</tr>
<tr>
<td>2739</td>
<td>1</td>
<td>motor plate</td>
</tr>
<tr>
<td>2830</td>
<td>1</td>
<td>bearing case</td>
</tr>
<tr>
<td>2382</td>
<td>2</td>
<td>canopy fixing bolt</td>
</tr>
<tr>
<td>2383</td>
<td>1</td>
<td>swashplate guide bracket</td>
</tr>
<tr>
<td>2499</td>
<td>1</td>
<td>motor adaptor plate</td>
</tr>
<tr>
<td>2720</td>
<td>1</td>
<td>LOGO 10 mainframe right</td>
</tr>
<tr>
<td>2721</td>
<td>1</td>
<td>LOGO 10 mainframe left</td>
</tr>
</tbody>
</table>

#### Main Gear, Bag 2

<table>
<thead>
<tr>
<th>Part</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1344</td>
<td>1</td>
<td>O-Ring</td>
</tr>
<tr>
<td>1915</td>
<td>4</td>
<td>countersunk screw M3 x 8</td>
</tr>
<tr>
<td>1940</td>
<td>3</td>
<td>socket head cap screw M4x5</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>washer 10x16x0.5</td>
</tr>
<tr>
<td>2386</td>
<td>1</td>
<td>fixing collar</td>
</tr>
<tr>
<td>2725</td>
<td>1</td>
<td>main gear, 200 teeth</td>
</tr>
<tr>
<td>2731</td>
<td>1</td>
<td>one-way hub</td>
</tr>
<tr>
<td>2740</td>
<td>1</td>
<td>main rotor shaft</td>
</tr>
</tbody>
</table>

#### Wash-out / Swashplate Bag 3

<table>
<thead>
<tr>
<th>Part</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>969</td>
<td>1</td>
<td>washout-block</td>
</tr>
<tr>
<td>978</td>
<td>2</td>
<td>mixing arm for slide bearing</td>
</tr>
<tr>
<td>980</td>
<td>2</td>
<td>bolt for no. 981</td>
</tr>
<tr>
<td>981</td>
<td>2</td>
<td>Y-rod</td>
</tr>
<tr>
<td>982</td>
<td>2</td>
<td>bolt + e-ring</td>
</tr>
<tr>
<td>1570</td>
<td>2</td>
<td>ball</td>
</tr>
<tr>
<td>1902</td>
<td>2</td>
<td>cylinder screw M2 x 8</td>
</tr>
<tr>
<td>2365</td>
<td>2</td>
<td>swashplate</td>
</tr>
</tbody>
</table>

#### Tail Rotor, Bag 5

<table>
<thead>
<tr>
<th>Part</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1570</td>
<td>1</td>
<td>ball</td>
</tr>
<tr>
<td>1902</td>
<td>1</td>
<td>cylinder screw M2 x 8</td>
</tr>
<tr>
<td>1921</td>
<td>1</td>
<td>set screw M3 x 3</td>
</tr>
<tr>
<td>1953</td>
<td>1</td>
<td>socket head cap screw M3 x 10</td>
</tr>
<tr>
<td>1954</td>
<td>2</td>
<td>socket head cap screw M3 x 12</td>
</tr>
<tr>
<td>1955</td>
<td>3</td>
<td>socket head cap screw M3 x 14</td>
</tr>
<tr>
<td>1958</td>
<td>2</td>
<td>socket head cap screw M3 x 25</td>
</tr>
<tr>
<td>2004</td>
<td>2</td>
<td>washer 5 x 10 x 0.1</td>
</tr>
<tr>
<td>2074</td>
<td>5</td>
<td>hex locknut M3</td>
</tr>
<tr>
<td>2442</td>
<td>1</td>
<td>tail rotor case</td>
</tr>
<tr>
<td>2446</td>
<td>1</td>
<td>tail rotor lever + washer 3x4x10,5</td>
</tr>
<tr>
<td>2450</td>
<td>1</td>
<td>tail rotor pitch plate</td>
</tr>
<tr>
<td>2452</td>
<td>1</td>
<td>control ring</td>
</tr>
<tr>
<td>2455</td>
<td>1</td>
<td>control sleeve</td>
</tr>
<tr>
<td>2458</td>
<td>1</td>
<td>tail rotor housing</td>
</tr>
<tr>
<td>2460</td>
<td>1</td>
<td>tail rotor blades</td>
</tr>
<tr>
<td>2462</td>
<td>2</td>
<td>tail rotor blade holder</td>
</tr>
<tr>
<td>2463</td>
<td>2</td>
<td>bushing 3 x 5 x 2.1</td>
</tr>
<tr>
<td>2466</td>
<td>1</td>
<td>driven belt gear</td>
</tr>
<tr>
<td>2467</td>
<td>1</td>
<td>gear driver</td>
</tr>
<tr>
<td>2468</td>
<td>1</td>
<td>driving pin 2 x 8 mm</td>
</tr>
<tr>
<td>2476</td>
<td>1</td>
<td>tail rotor shaft</td>
</tr>
<tr>
<td>2490</td>
<td>1</td>
<td>vertical stabilizer</td>
</tr>
<tr>
<td>2765</td>
<td>1</td>
<td>driven belt 490 XL</td>
</tr>
</tbody>
</table>

#### Tail Boom, Bag 6

<table>
<thead>
<tr>
<th>Part</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1560</td>
<td>2</td>
<td>ball link 2 mm</td>
</tr>
<tr>
<td>1921</td>
<td>1</td>
<td>set screw M3 x 5</td>
</tr>
<tr>
<td>1965</td>
<td>3</td>
<td>socket head cap screw M3 x 18</td>
</tr>
<tr>
<td>2013</td>
<td>2</td>
<td>washer 4 x 8 x 1</td>
</tr>
<tr>
<td>2064</td>
<td>8</td>
<td>self-tapping screw 2.9 x 16</td>
</tr>
<tr>
<td>2074</td>
<td>1</td>
<td>hex locknut M3</td>
</tr>
<tr>
<td>2370</td>
<td>2</td>
<td>hex spacer 27 mm</td>
</tr>
<tr>
<td>2370</td>
<td>2</td>
<td>hex spacer 23 mm</td>
</tr>
<tr>
<td>2485</td>
<td>1</td>
<td>tail boom holder</td>
</tr>
<tr>
<td>2488</td>
<td>1</td>
<td>cylindrical pin 4 x 31.5</td>
</tr>
<tr>
<td>2491</td>
<td>1</td>
<td>horizontal stabilizer</td>
</tr>
<tr>
<td>2728</td>
<td>1</td>
<td>driven belt gear, 40 Z</td>
</tr>
<tr>
<td>2760</td>
<td>1</td>
<td>tail boom 565 mm</td>
</tr>
<tr>
<td>2762</td>
<td>1</td>
<td>tail rotor rod, 945mm</td>
</tr>
<tr>
<td>2763</td>
<td>2</td>
<td>rudder control guide</td>
</tr>
</tbody>
</table>

#### Main Rotor Head, Bag 7

<table>
<thead>
<tr>
<th>Part</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>909</td>
<td>1</td>
<td>yoke</td>
</tr>
<tr>
<td>933</td>
<td>1</td>
<td>stabilizer control bridge</td>
</tr>
<tr>
<td>935</td>
<td>1</td>
<td>seesaw</td>
</tr>
<tr>
<td>2314</td>
<td>2</td>
<td>blade holder</td>
</tr>
<tr>
<td>2346</td>
<td>1</td>
<td>rotorhead shaft</td>
</tr>
<tr>
<td>2358</td>
<td>2</td>
<td>stabilizer blade 3 mm</td>
</tr>
<tr>
<td>2361</td>
<td>2</td>
<td>ball bolt</td>
</tr>
<tr>
<td>912</td>
<td>2</td>
<td>pin</td>
</tr>
<tr>
<td>939</td>
<td>1</td>
<td>seesaw bolt</td>
</tr>
<tr>
<td>965</td>
<td>2</td>
<td>double ball-link</td>
</tr>
<tr>
<td>1570</td>
<td>4</td>
<td>balls</td>
</tr>
<tr>
<td>1900</td>
<td>2</td>
<td>cylinder screw M2 x 3</td>
</tr>
<tr>
<td>1902</td>
<td>8</td>
<td>cylinder screw M2 x 8</td>
</tr>
<tr>
<td>1903</td>
<td>4</td>
<td>cylinder screw M2 x 10</td>
</tr>
<tr>
<td>1921</td>
<td>2</td>
<td>set screw M3 x 3</td>
</tr>
<tr>
<td>1956</td>
<td>2</td>
<td>socket head cap screw M3 x 16</td>
</tr>
<tr>
<td>1965</td>
<td>1</td>
<td>cap screw (yoke) M3 x 18</td>
</tr>
<tr>
<td>1972</td>
<td>2</td>
<td>socket head cap screw M3 x 12</td>
</tr>
<tr>
<td>1975</td>
<td>2</td>
<td>cap screw (blade holder) M3 x 25</td>
</tr>
<tr>
<td>2012</td>
<td>4</td>
<td>Washer 3x7x0.5</td>
</tr>
<tr>
<td>2015</td>
<td>2</td>
<td>washer 4 x 12 x 1</td>
</tr>
<tr>
<td>2070</td>
<td>4</td>
<td>hex nut M2</td>
</tr>
<tr>
<td>2072</td>
<td>1</td>
<td>hex nut M3</td>
</tr>
<tr>
<td>2074</td>
<td>2</td>
<td>hex locknut M3</td>
</tr>
<tr>
<td>2320</td>
<td>2</td>
<td>mixing arm, slide bearing 3x5x6</td>
</tr>
<tr>
<td>2750</td>
<td>1</td>
<td>stabilizer bar 360 mm</td>
</tr>
<tr>
<td>2755</td>
<td>6</td>
<td>dumper rubber 8x2.5 (4x), 7x2.5 (2x)</td>
</tr>
</tbody>
</table>

#### Landing Frame, Bag 8

<table>
<thead>
<tr>
<th>Part</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954</td>
<td>4</td>
<td>socket head cap screw M3 x 12</td>
</tr>
<tr>
<td>2012</td>
<td>4</td>
<td>washer 3 x 7 x 0.5</td>
</tr>
<tr>
<td>2074</td>
<td>4</td>
<td>hex locknut</td>
</tr>
<tr>
<td>2495</td>
<td>2</td>
<td>landing gear strut</td>
</tr>
<tr>
<td>2775</td>
<td>2</td>
<td>landing gear skid</td>
</tr>
</tbody>
</table>

#### Control rods, Bag 9

<table>
<thead>
<tr>
<th>Part</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1567</td>
<td>6</td>
<td>ball-links 2.5 mm</td>
</tr>
<tr>
<td>1569</td>
<td>2</td>
<td>ball-links, angular 2.5 mm</td>
</tr>
<tr>
<td>1570</td>
<td>4</td>
<td>ball</td>
</tr>
<tr>
<td>1586</td>
<td>4</td>
<td>control rod 60 x 2.5 mm</td>
</tr>
<tr>
<td>1902</td>
<td>4</td>
<td>cylinder screw M2 x 8</td>
</tr>
<tr>
<td>2070</td>
<td>4</td>
<td>hex nut M2</td>
</tr>
<tr>
<td>2770</td>
<td>3</td>
<td>control rod 30 x 2.5mm (swashplate)</td>
</tr>
</tbody>
</table>

#### Ball Bearings, Bag 10

<table>
<thead>
<tr>
<th>Part</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>937</td>
<td>3</td>
<td>ball bearing 4 x 13 x 5</td>
</tr>
<tr>
<td>941</td>
<td>2</td>
<td>ball bearing 3 x 10 x 4</td>
</tr>
<tr>
<td>1329</td>
<td>2</td>
<td>ball bearing 10 x 19 x 5</td>
</tr>
<tr>
<td>1440</td>
<td>2</td>
<td>ball bearing 6 x 10 x 2.5</td>
</tr>
<tr>
<td>2351</td>
<td>4</td>
<td>ball bearing 8 x 14 x 4</td>
</tr>
<tr>
<td>2423</td>
<td>4</td>
<td>ball bearing 3 x 8 x 3</td>
</tr>
<tr>
<td>2470</td>
<td>2</td>
<td>ball bearing 5 x 10 x 4</td>
</tr>
<tr>
<td>2489</td>
<td>1</td>
<td>ball bearing 4 x 9 x 4</td>
</tr>
<tr>
<td>2478</td>
<td>1</td>
<td>Antenna tube</td>
</tr>
<tr>
<td>2790</td>
<td>1</td>
<td>LOGO 10 canopy</td>
</tr>
<tr>
<td>2792</td>
<td>1</td>
<td>decals LOGO 10</td>
</tr>
</tbody>
</table>

---

**Manual LOGO 10**

Page 5 © Mikado Modellhubschrauber
1 Main Frame

1.1 Motorplate

Bag 1 • Bag 10

1x 10x19x5 #1329
6x M3 #2072

#2379
Please avoid overtightening the 2.9x16 mm selftapping screws and the socket head cap screw M3x35 when drilling them into the plastic side-frames.

Use the 8 mm ball end #2189, so you have the option of attaching the tail boom brace later (#2761, not included in the kit), if desired.
1 Main Frame

1.3 Bearing Case

Bag 1 · Bag 10

Please avoid overtightening the 2.9x13 mm selftapping screws when drilling them into the plastic side-frames.
Align the skids and secure them with superglue.
Some electric motors (e.g. Kontro-nik, Plettenberg, Speed 700 Neodyme motors) are constructed such that they cannot be moved along the motor plate. If you are using one of these motors, please use the motor adaptor plate #2499. The plate is not needed for Hacker motors.

Please check from the Mikado website which pinion works best with the motorset you have (on www.mikado-heli.de go to LOGO 10 and click “Motorization”). When a wrong pinion is chosen, the performance of your electric helicopter will deteriorate and the motor or speed controller can be damaged.

Do not tighten the set screw fully until the final position of the pinion on the motor shaft is determined. This is done after installing the main gear.

There are two options for attaching the pinion:

1. For securing the pinion, you may flatten the motor shaft where the set screw meets the motor shaft - without making a flat surface on the motor shaft.

2. Alternatively, you may screw the set screw directly onto the motor shaft. For this it is required that the set screw has an appropriate rim for engaging the motorshaft (all Mikado pinions have this rim). Note, however, that after attaching the set screw once, the rim becomes blunt and may not be used again.
3 Motor Installation

3.2 Motor Attachment

Bag 1

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x</td>
<td>M3x12</td>
<td>#1964</td>
</tr>
<tr>
<td>2x</td>
<td>3x7x0.5</td>
<td>#2012</td>
</tr>
</tbody>
</table>

When installing the motor, tighten the socket head cap screws only slightly, making sure that the motor can still be moved on the motor plate.
4 Main Gear

4.1 Hub

Bag 2

<table>
<thead>
<tr>
<th>Count</th>
<th>Part Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x</td>
<td>M3x8</td>
<td>#1915</td>
</tr>
<tr>
<td>3x</td>
<td>M4x5</td>
<td>#1940</td>
</tr>
<tr>
<td>2x</td>
<td>10x16x0.5</td>
<td>#2010</td>
</tr>
<tr>
<td>1x</td>
<td></td>
<td>#1344</td>
</tr>
</tbody>
</table>

Do not yet tighten the three M4x5 set screws on the mainshaft collar.
After having attached the freeway hub of the main gear to the rotor shaft, pull the rotor shaft slightly upward and simultaneously push the main shaft collar down onto ball bearing. Next tighten the set screws. The rotor shaft should turn easily and it should not have any axial play.

4.2 Adjusting Gear Backlash

The gear backlash must be adjusted (see drawings). Excess backlash can cause premature wear of the main gear and will lead to shorter flight times.
Should you have difficulty mounting the 2x8 mm pin, carefully tap it with a rubber hammer, or use a vice. The 5x10x4 bearings can also be mounted on the rotor shaft using a vice and tapping the shaft softly with a rubber hammer. If the tail rotor shaft shows axial play after closing the two halves of the tail rotor case, use one or two of the 5x10x0.1 washers which are included in the bag.
5 Tail Rotor

5.2 Vertical Fin

Bag 5

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Material</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x</td>
<td>M3x25</td>
<td></td>
<td>#1958</td>
</tr>
<tr>
<td>1x</td>
<td>M3x10</td>
<td></td>
<td>#1953</td>
</tr>
<tr>
<td>3x</td>
<td>M3</td>
<td></td>
<td>#2074</td>
</tr>
</tbody>
</table>

#2490
5 Tail Rotor

5.3 Pitch Slider

Bag 5 • Bag 10

It is important that the tail pitch plate #2450 is aligned properly on the control sleeve #2455. In the case of misalignment, the control sleeve may be deformed. The mounted tail pitch plate should be able to move on the tail rotor shaft with little resistance.
The mounted tail rotor lever should be able to move with little resistance.
5 Tail Rotor

5.6 Final Assembly

All movable parts of the tail rotor blade holders should be able to move with little resistance. When there is too much resistance, the tail rotor will not react to subtle input and the gyro's maximum sensitivity cannot be fully exploited.
6 Tail Boom

6.1 Tail Boom Assembly

Bag 6

Note that the two tail rotor pushrod guides are different in height.

The tail boom has two round cut-outs on one end. These should be fitted into the matching shapes in the tail rotor case.
6 Tail Boom

6.2 Tail Boom Holder

Bag 6

Turn the tail drive belt 90° degrees (clockwise).
Important: Check belt tension prior to every flight. Incorrect belt tension can cause disturbances for your model R/C system. Incorrect belt tension can lead to a situation where you lose control of the tail rotor of your helicopter.

For tightening the belt pull the tail boom holder toward the front. Belt tension is fixed with the M3x18 socket head cap screw for tightening the tail boom holder to the tail boom. The belt should be tight. When pressing with your fingers, both sides of the belt should not come in contact with each other.
Screw the two 2 mm ball links onto the control rods. Their exact positions are of no importance at this point. The ball ends are attached to the balls more easily when the text on them is pointed away from the helicopter.
6 Tail Boom

6.5 Installation

Bag 6

For mounting the tail assembly in the side-frames, pull the rear ends of the side-frames apart. Do not over-tighten the 2.9x13 mm selftapping screws when drilling them into the plastic frame.
6 Tail Boom

6.6 Horizontal Fin

Bag 6

Avoid overtightening the M3x18 mm socket head cap screws when drilling them into the plastic frame. Mount the horizontal stabilizer perpendicular to the vertical fin.

6.7 Tail Rotor Blades

Bag 5

Tighten the screws holding the tail rotor blades, but ensure that the blades move easily in the tail rotor holders under centrifugal force.
7 Finished Main Frame & Tail Boom
8 Preparation for Servo Installation

8.1 120° CCPM

The swashplate in the LOGO 10 is designed to be operated by three servos. The transmitter provides for electronic mixing. You may choose from two different methods for mixing the swashplate: 90° CCPM and 120° CCPM. Mikado recommends 120° CCPM. Installation and programming of 120° CCPM is explained and illustrated below.

8.2 90° CCPM

90° swashplate mixing differs in a few details from 120° mixing (programming of transmitter, installation of swashplate servos and elevator servo movement.) Installation and programming of 90° CCPM will not be explained below.
8 Preparation for Servo Installation

8.3 Servor Arms

Bag 9

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x</td>
<td>M2x8</td>
<td></td>
<td>#1902</td>
</tr>
<tr>
<td>4x</td>
<td>M2</td>
<td></td>
<td>#2070</td>
</tr>
<tr>
<td>4x</td>
<td>4,8</td>
<td></td>
<td>#1570</td>
</tr>
</tbody>
</table>

Now you must decide which pitch range you wish to use. For different flying styles, different pitch ranges must be used. For normal flight with some aerobatics, choose standard settings and connect the push rod at the 18 mm hole on the servo arm. For 3D flight use 20 mm distance instead. The ball for the tail-rotor servo arm should be attached with a distance of 14-15 mm from the servo arm center.

8.4 Servo Centering

Connect the servo wires to the receiver and set all channels in your transmitter to neutral. Now attach the servo arms perpendicular to the servos.

120° CCPM

Rudder Servo Elevator Servo Aileron Servo left Aileron Servo right

90° CCPM
8 Preparation for Servo Installation

8.5 Linkage

Bag 9

Linkage measurements for standard pitch range (-3° to +11°)

For more cyclic range remove bridge.

Linkage measurements for 3D pitch range (-12° to +12°)

For more cyclic range remove bridges.
9 Servo Installation

9.1 Tail Rotor Servo

With LOGO 10 side-frames you can use two different sizes of tail rotor servos. A larger standard-size tail rotor servo can be mounted to the left side-frame, a smaller mini servo is mounted to right side-frame.

For determining the appropriate position for mounting the tail rotor servo, place the servo against the chassis and mark the holes for attachment with a pen or needle. Then drill where you have made the markings. The ball links are attached more easily when the text on them are pointed away from the helicopter.
When microservos are used, the linkages should be aligned as close as possible to vertical.

When using larger servos the linkages should be aligned as close as possible to vertical or have the same angle.

9.2 Elevator Servo

Bag 3

For determining the best position for the elevator servo, place the servo against the chassis and mark the attachment holes with a pen or needle. Then drill where you have made the markings.

Incorrect!
Incorrect!
9 Servo Installation

9.3 Elevator Linkage/Swashplate

9.4 Canopy Fixing Bolts
Bag 1
9 Servo Installation

9.5 Aileron Servo left
9 Servo Installation

9.6 Aileron Servo right
9 Servo Installation

9.7 Aileron Linkage
The Y-rods #981 must move easily on the mixing arm #978.
10 Wash-Out Hub

10.2 Installation

The wash-out hub must be able to move up/down easily on the rotor shaft.
11 Main Rotor Head

11.1 Blade Grips
Bag 7 • Bag 10

![Diagram of Blade Grips]

11.2 Mixing Arms
Bag 7

![Diagram of Mixing Arms]

- 4x M2x8 #1902
- 4x 4,8 #1570
- 2x M3x16 #1956
- 4x 3x7x0,5 #2012
11 Main Rotor Head

11.3 Yoke
Bag 7

- 4x 8x2,5 mm #2755
- 2x 7x2,5 mm #2755
- 2x M4x12 #1972
- 2x 4x12x1 mm #2015
11 Main Rotor Head

11.4 Seesaw

Bag 7

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x</td>
<td>4x13x5</td>
</tr>
<tr>
<td>2x</td>
<td>3x10x4</td>
</tr>
<tr>
<td>2x</td>
<td>M2x3</td>
</tr>
</tbody>
</table>

#935

#939
11 Main Rotor Head

11.5 Flybar Control Bridge

11.6 Ball Bolts
11 Main Rotor Head

11.7 Flybar
Bag 7

11.8 Flybar Paddles
Bag 7
11 Main Rotor Head

11.9 Final Assembly

Bag 7

- 2x M3x25 #1975
- 2x M3 #2074
- 2x 2x30 mm #912
- 1x M3x18 #1965
- 1x M3 #2072
11.10 Rotor Head Linkage

Next mount the length-adjusted fly-bar control linkages. The ball links are attached to the balls more easily when the text on them is pointed away from the helicopter.
11 Main Rotor Head

The linkages between the swash-plate and the mixing arms are used later to adjust the rotor blade tracking.
12 Logo 10 assembled
13 RC Installation

13.1 Receiver, Gyro, Speed Controller
Use cable tie straps to simplify removal of battery fixing rings.

If you are using a 12-cell battery pack, use the front and the rear attachment clips for the battery fixing rings. If you are using a 10-cell battery pack, use the front and middle attachment clips.
120° Swashplate Mixing (120° CCPM)
The LOGO 10 swashplate is designed to be controlled via electronic CCPM. Thus the correct control inputs of the three swashplate servos are automatically mixed by the R/C transmitter. If you have never programmed 120° CCPM before, please read this introductory text carefully.

Collective (Pitch)
Pitch function is used to control the lift or sink of the helicopter. When pitch input is given, all three swashplate servos travel together in the same direction and the same amount. As a result the swash-plate moves up or down on an even level.

Aileron (Roll)
Aileron (roll) is used to control the helicopter's movements around its longitudinal axis. When aileron (roll) input is given, the two roll servos (in the front of the swashplate) travel in opposite directions. As a result the swash-plate tilts to the right or to the left.
Elevator (Tilt)
For tilting the helicopter, use the elevator function. For tilting forward, the two aileron servos move downward and the backward elevator servo moves upward. The elevator servo moves twice as much as the two aileron servos.

Programming 120° CCPM
As the programming procedure varies with different types of R/C systems, it is necessary for you to refer to the instruction manual of your R/C system. Here are only a few general guidelines which apply to most systems.

Servo Centering with Sub-Trim Function
As indicated in the above sections on mounting the servos, it is important that the servo arms are exactly centered. You should use the servo sub-trim function of your R/C system for this purpose.

Activating 120° CCPM
Likely, the 120° CCPM function is initially disabled in your R/C transmitter software and needs to be separately activated. Please refer to your R/C system manual, where you will also find information on which channels should be used for the elevator servo and the two roll servos. It is important that you stick with the requirements stated in the manual. Otherwise the 120° CCPM will not function properly.

Your R/C may support various different CCPM mixings. For Logo 10 choose the 120° mixing with two roll servos in the front and one elevator servo in the back.

Use the relevant menus for setting the mixing proportions for roll, elevator and pitch functions. Begin by setting the mix values to 50% each. Higher mix values give higher servo travel for that function. This can have the unwanted result that the swashplate reaches its mechanical limits and causes damage to the servos or rods or to the swashplate.

If necessary, you may use the CCPM menu to reverse the direction of the function. This is necessary, for example, if the swashplate tilts to the wrong side or the pitch function is inverted. The menu for reversing servo functions can be used for reversing the movements of individual servo arms, but not for reversing the entire control function and of all the involved servos.
Servo Travel
It may be the case that all swash-plate servos do not travel the same distance at maximum deflection. Even small differences between the 3 servos can prevent the swash-plate from being level during collective pitch inputs and cause the heli to drift.

In order to correct such servo travel differences, you must increase or decrease the servo travel setting accordingly. Use the menu ATV for adjusting the end points, if necessary. Do not get this menu mixed up with Dual/Rate. (Dual/Rate menu allows using multiple servo travel ranges and toggling between them during flight.)

Example:
If during maximum pitch the elevator servo travel is slightly smaller than travel of the two aileron servos, then the swash-plate will be tilted backwards, causing the heli also to drift backwards. In this case you should increase the travel of the elevator servo.

Setting Pitch Values
Please choose from two different pitch settings, depending on your flying style. The two settings are illustrated below. The standard range is for beginners and for pilots who will do some aerobatic flight without extended periods of inverted flight.

The final pitch values must be tested during test flying. Once set, the values will work with the rotor blades you used. In case you change over to a different set of rotor blades, the pitch values will have to be adjusted to the properties (size, profile etc.) of the new set.
14 RC Programming

Standard Flight Style Pitch Values

<table>
<thead>
<tr>
<th>Application</th>
<th>Low Pitch</th>
<th>Hovering (Stick Centered)</th>
<th>High Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>-3°</td>
<td>7° to 8°</td>
<td>11° to 12°</td>
</tr>
</tbody>
</table>

If you are an experienced pilot and plan on flying inverted, select the 3D settings:

Pitch Values 3D

<table>
<thead>
<tr>
<th>Application</th>
<th>Low Pitch</th>
<th>Stick Centered</th>
<th>High. Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>-10° bis -12°</td>
<td>0°</td>
<td>11° to 12°</td>
</tr>
</tbody>
</table>

For setting the respective pitch values, please use a pitch gauge. The values for minimum, maximum and hovering must be specified in the menus of the transmitter.
Aileron and Elevator Travel

The travel range of the aileron and elevator servos is limited by the swash-plate’s mechanical limits. Please take care that the swash-plate does not hit the maximum of its travel. This can have the unwanted result that the swashplate reaches its mechanical limits and causes damage to the servos or rods to the swash-plate itself.

If you desire more agility for your helicopter, use lighter flybar paddles.

Tail rotor settings

When the servo arm of the tail rotor servo is in the center, the tail rotor lever and the servo arm should be perpendicular with respect to each other. The tail rotor pitch lever should never reach its mechanical limits.

In case the servo travel is too large, you have the following options for correcting this:
1. Move the ball end of the tail rotor servo closer to the center of the servo arm.
2. Reduce the servo travel in your R/C system using ATV.
3. Reduce the servo travel in your gyro (not all gyros have this option).

In case the servo travel is too small, you have the following options for correcting this:
1. Move the ball end of the tail rotor servo further away from the center of the servo arm.
2. Increase the servo travel in your R/C system using ATV.
3. Increase the servo travel in your gyro (not all gyros have this option).

Ensure that the tail rotor servo turns in the correct direction. If necessary, reverse the direction of the tail rotor servo function in your R/C system.

Adjust the tail rotor linkage in length such that the tail rotor servo arm and the tail rotor lever are at 90 with respect to each other. All parts serving the tail rotor movements must move smoothly. When there is too much resistance, the tail rotor will not react to subtle input and the gyro’s maximum sensitivity cannot be fully exploited.

Revo-Mix/Gyro

It is necessary to compensate for the torque created by the motor during flight (but not during autorotation). This compensation is done by adjusting the tail rotor pitch. There are two options for achieving this:

1. Using normal gyro mode
Please refer to your R/C system manual for activating the revolution mixing function and for setting all parameters correctly. Final settings should be trimmed during test flights.
2. Using a gyro in Heading-Hold mode

The Heading-Hold gyro mode compensates automatically the deviation caused by the motor torque. Therefore, if Heading-Hold mode is used, revo-mix should not be programmed additionally.

Important: Check to ensure that the tail rotor assembly moves smoothly and without play. Otherwise the gyro and servo will not compensate the torque properly.

**Rotor Head RPM control**

LOGO 10 is designed to be flown with constant rotor head speed. Irrespective of flight attitude (ascending, descending, hovering), rotor speed should be kept roughly constant. There are two different methods for obtaining constant rotor speed:

**Rotor speed control with speed controller**

All speed controllers can be used in this mode. With speed controller it is necessary to program a throttle curve (see manual). Programming of throttle curve requires that you associate a given throttle value with a particular pitch value. In this way, the rotor speed is held almost constant with all pitch values.

Throttle curve programming depends on the type and quality of the R/C system. Simpler, inexpensive R/C systems designed for model helicopters usually have a 3-point throttle curve. High-end R/C systems typically have throttle curves with more configurable points (up to 9). Fine tuning of throttle curves will be necessary during test flights.

Note that wrong throttle curve settings reduce performance and can lead to overheating of the motor and the speed controller.

**Rotor speed control with governor (RPM regulation mode)**

A speed governor keeps the rotor speed constant, independent of flight condition. Thus, no programming of throttle curves is necessary. The easiest way of toggling between two rotor speeds is by way of a switch. Usually, only speed controllers for brushless motors have this feature.
15 Canopy

15.1 Trimming and Taping

Tip: When cutting, always leave generous edges at first. Cut to final size after you have fitted parts.

On both of the white halves, a marking indicates where the window belongs. With a scissors, trim away the excess material at the two white halves of the canopy along the insides of these markings. Unlike in the picture, please do not cut sharp edges at the top and back ends of the canopy. The rounded edges must be retained for stability. After taping the two halves together and fitting the window, you may trim away any excess edges.

In general, we recommend to use transparent scotch tape on the insides of the three canopy parts for connecting them. Taping provides sufficient stability and the procedure is easier and less time-consuming than gluing (for instance). Corrections, if necessary, are no problem either.

The LOGO 10 canopy is attached to the main frame in three places. The lower part of the canopy is placed between the front landing bow and the main frame. For this, you need to make cut-outs as shown in the picture. The back part of the canopy is attached at the canopy bolts of the main frame using two rubber grommets.

The final fitting of the canopy must be tested when the helicopter is fully equipped (with battery, servos and linkages). Ensure that the servo arms and linkages do not have any contact with the canopy. In the front area, the battery may and should have contact with the canopy providing additional support. When more than 12 cells are used, extra room in the nose of the canopy by padding the battery, thereby lifting it slightly.

When the final position of the canopy has been determined, mark the two holes for attaching the canopy at the bolts, then drill the two holes (Ø 8 mm).
15 Canopy

15.2 Decals
16 Rotor Blades

Balancing of Rotor Blades (Center of Gravity)
Place each rotor blade over an edge as shown in picture (1). Adjust the blades so that they are in equilibrium. If the center of gravity is not in the same place in each blade, this needs to be corrected using tape. Apply as much tape as necessary until both blades show their center of gravity in the same place.

Static balancing
Screw the rotor blades together as shown in picture (2). The rotor blades are properly balanced when they are suspended exactly horizontally. If one of the rotor blades is not exactly horizontal, the blades are not in equilibrium.

This is corrected by applying tape to lighter blade.

When mounting the rotor blades to the blade holders, note the proper direction (clockwise rotation). Tighten the cap screws holding the rotor blades, so that the blades cannot move easily in the blade holders.
17 Final Pre-Flight Check

17.1 Direction of Main and Tail Rotation

Prior to the first flight double-check the direction of rotation of the main rotor head and the tail rotor.

17.2 Blade Tracking Adjustment

Prior to the first flight the tracking of the rotor blades needs to be adjusted. If the tracking is not adjusted properly, this can cause vibrations and lead to instability of the helicopter.

Apply colored tape to the tip of one of the rotor blades. Apply tape of a different color to the tip of the other rotor blade. When you are ready for your first flight, increase the rotor speed to just before lift-off. From a safe distance, check the rotor disk at eye-level. Very likely, one rotor blade will move below the other.

Make a note of the color of the low-moving blade. Then turn off the motor and wait until the rotor head has come to a halt. Lengthen the linkage (1) of the rotor blade which was moving low by unscrewing the ball links somewhat. Repeat the checking procedure until both rotor blades move on the same level.
18 Control Movements

18.1 Pitch/Throttle

You may want to program a different stick mode than the one shown. Please check which stick mode is used by other local pilots. Use the same one, so fellow pilots can assist you on the field.

Important: Flying a model helicopter requires many hours of training. During your first attempts, while familiarizing yourself with the different control movements, keep the helicopter low above the ground (just a few centimeters/a couple of inches.)

18.2 Rudder
18 Control Movements

18.3 Elevator

18.4 Aileron
19 Overview

19.1 Chassis
19 Overview

19.2 Rotor Head

19.3 Tail Boom/Tail Rotor
19 Overview

19.4 Tuning/Accessories

- **Tail Rotor Lever ball-raced** #2447
- **Glass-Fibre Rotor Blades** #2712
- **BEC, replaces Receiver Battery, 10-14 cells** #2530
- **LOGO 10 Finished Canopy** #2791
- **Carbon Tailboom** #2759
- **Carbon Vertical Fin** #2780
- **Carbon Horizontal Fin** #2781 (not in picture)
- **O-Rings for stronger dampening** #2756
- **Main Rotor Shaft (hardened)** #2741
- **Tail Rotor Shaft (hardened)** #2475
- **Clamp Ring for Main Rotor Shaft** #2385
- **Thrust Bearing Set Steel** #2345
- **Thrust Bearing Set Aluminium** #2345
- **Rotor Disk** #932
- **Carbon Battery Support Plate** #2782
- **Light Stabilizer Paddles for 3D** #2359
- **Mixing Arms ball-raced** #2322
- **Aluminium Hex Spacers** #2371
- **Wash-Out Hub ball-raced** #970
- **Main Rotor Shaft (hardened)** #2741
- **Thrust Bearing Set Steel** #2345
- **Thrust Bearing Set Aluminium** #2345
- **Rotor Disk** #932
- **BEC, replaces Receiver Battery, 10-14 cells** #2530
- **Carbon Tailboom** #2759
- **Glass-Fibre Rotor Blades** #2712
- **LOGO 10 Finished Canopy** #2791
- **Carbon Vertical Fin** #2780
- **Carbon Horizontal Fin** #2781 (not in picture)
- **O-Rings for stronger dampening** #2756
- **Main Rotor Shaft (hardened)** #2741
- **Tail Rotor Shaft (hardened)** #2475
- **Clamp Ring for Main Rotor Shaft** #2385
- **Thrust Bearing Set Steel** #2345
- **Thrust Bearing Set Aluminium** #2345
- **Rotor Disk** #932
- **Carbon Battery Support Plate** #2782
- **Light Stabilizer Paddles for 3D** #2359
- **Mixing Arms ball-raced** #2322
- **Aluminium Hex Spacers** #2371
- **Wash-Out Hub ball-raced** #970

Manual **LOGO 10**  
Page 63  
©Mikado Modellhubschrauber
Modellhubschrauber
www.Mikado-Heli.de